Highest vectors of representations (total 28) ; the vectors are over the primal subalgebra. | \(g_{4}+1/2g_{2}-1/2g_{-1}+1/2g_{-6}\) | \(h_{6}-2h_{4}-2h_{2}+h_{1}\) | \(-h_{5}-h_{4}+h_{3}-h_{2}+h_{1}\) | \(g_{6}-g_{1}+2g_{-2}+g_{-4}\) | \(g_{14}\) | \(g_{13}\) | \(-g_{20}+2g_{10}\) | \(-g_{17}+2g_{9}\) | \(-g_{16}+1/2g_{5}\) | \(g_{12}+1/2g_{3}\) | \(g_{11}\) | \(g_{7}\) | \(g_{23}\) | \(-g_{26}+1/2g_{19}\) | \(-g_{28}+1/2g_{19}\) | \(g_{25}\) | \(g_{30}+g_{15}\) | \(g_{22}\) | \(-g_{21}+g_{18}\) | \(-g_{27}+2g_{18}\) | \(g_{24}\) | \(g_{31}\) | \(g_{29}\) | \(g_{33}\) | \(g_{32}\) | \(g_{36}\) | \(g_{35}\) | \(g_{34}\) |
weight | \(0\) | \(0\) | \(0\) | \(0\) | \(\omega_{1}\) | \(\omega_{1}\) | \(\omega_{1}\) | \(\omega_{1}\) | \(\omega_{1}\) | \(\omega_{1}\) | \(\omega_{1}\) | \(\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(3\omega_{1}\) | \(3\omega_{1}\) | \(3\omega_{1}\) | \(3\omega_{1}\) | \(4\omega_{1}\) | \(4\omega_{1}\) | \(4\omega_{1}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(-2\psi_{1}-4\psi_{2}\) | \(0\) | \(0\) | \(2\psi_{1}+4\psi_{2}\) | \(\omega_{1}-6\psi_{1}-6\psi_{2}\) | \(\omega_{1}-6\psi_{2}\) | \(\omega_{1}-4\psi_{1}-2\psi_{2}\) | \(\omega_{1}+2\psi_{1}-2\psi_{2}\) | \(\omega_{1}-2\psi_{1}+2\psi_{2}\) | \(\omega_{1}+4\psi_{1}+2\psi_{2}\) | \(\omega_{1}+6\psi_{2}\) | \(\omega_{1}+6\psi_{1}+6\psi_{2}\) | \(2\omega_{1}-4\psi_{1}-8\psi_{2}\) | \(2\omega_{1}-2\psi_{1}-4\psi_{2}\) | \(2\omega_{1}-2\psi_{1}-4\psi_{2}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}+2\psi_{1}+4\psi_{2}\) | \(2\omega_{1}+2\psi_{1}+4\psi_{2}\) | \(2\omega_{1}+4\psi_{1}+8\psi_{2}\) | \(3\omega_{1}-4\psi_{1}-2\psi_{2}\) | \(3\omega_{1}+2\psi_{1}-2\psi_{2}\) | \(3\omega_{1}-2\psi_{1}+2\psi_{2}\) | \(3\omega_{1}+4\psi_{1}+2\psi_{2}\) | \(4\omega_{1}-2\psi_{1}-4\psi_{2}\) | \(4\omega_{1}\) | \(4\omega_{1}+2\psi_{1}+4\psi_{2}\) |
Isotypical components + highest weight | \(\displaystyle V_{-2\psi_{1}-4\psi_{2}} \) → (0, -2, -4) | \(\displaystyle V_{0} \) → (0, 0, 0) | \(\displaystyle V_{2\psi_{1}+4\psi_{2}} \) → (0, 2, 4) | \(\displaystyle V_{\omega_{1}-6\psi_{1}-6\psi_{2}} \) → (1, -6, -6) | \(\displaystyle V_{\omega_{1}-6\psi_{2}} \) → (1, 0, -6) | \(\displaystyle V_{\omega_{1}-4\psi_{1}-2\psi_{2}} \) → (1, -4, -2) | \(\displaystyle V_{\omega_{1}+2\psi_{1}-2\psi_{2}} \) → (1, 2, -2) | \(\displaystyle V_{\omega_{1}-2\psi_{1}+2\psi_{2}} \) → (1, -2, 2) | \(\displaystyle V_{\omega_{1}+4\psi_{1}+2\psi_{2}} \) → (1, 4, 2) | \(\displaystyle V_{\omega_{1}+6\psi_{2}} \) → (1, 0, 6) | \(\displaystyle V_{\omega_{1}+6\psi_{1}+6\psi_{2}} \) → (1, 6, 6) | \(\displaystyle V_{2\omega_{1}-4\psi_{1}-8\psi_{2}} \) → (2, -4, -8) | \(\displaystyle V_{2\omega_{1}-2\psi_{1}-4\psi_{2}} \) → (2, -2, -4) | \(\displaystyle V_{2\omega_{1}} \) → (2, 0, 0) | \(\displaystyle V_{2\omega_{1}+2\psi_{1}+4\psi_{2}} \) → (2, 2, 4) | \(\displaystyle V_{2\omega_{1}+4\psi_{1}+8\psi_{2}} \) → (2, 4, 8) | \(\displaystyle V_{3\omega_{1}-4\psi_{1}-2\psi_{2}} \) → (3, -4, -2) | \(\displaystyle V_{3\omega_{1}+2\psi_{1}-2\psi_{2}} \) → (3, 2, -2) | \(\displaystyle V_{3\omega_{1}-2\psi_{1}+2\psi_{2}} \) → (3, -2, 2) | \(\displaystyle V_{3\omega_{1}+4\psi_{1}+2\psi_{2}} \) → (3, 4, 2) | \(\displaystyle V_{4\omega_{1}-2\psi_{1}-4\psi_{2}} \) → (4, -2, -4) | \(\displaystyle V_{4\omega_{1}} \) → (4, 0, 0) | \(\displaystyle V_{4\omega_{1}+2\psi_{1}+4\psi_{2}} \) → (4, 2, 4) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | \(W_{8}\) | \(W_{9}\) | \(W_{10}\) | \(W_{11}\) | \(W_{12}\) | \(W_{13}\) | \(W_{14}\) | \(W_{15}\) | \(W_{16}\) | \(W_{17}\) | \(W_{18}\) | \(W_{19}\) | \(W_{20}\) | \(W_{21}\) | \(W_{22}\) | \(W_{23}\) | \(W_{24}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. |
| Cartan of centralizer component.
|
|
|
|
|
|
|
|
|
|
|
| Semisimple subalgebra component.
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(0\) | \(0\) | \(\omega_{1}\) \(-\omega_{1}\) | \(\omega_{1}\) \(-\omega_{1}\) | \(\omega_{1}\) \(-\omega_{1}\) | \(\omega_{1}\) \(-\omega_{1}\) | \(\omega_{1}\) \(-\omega_{1}\) | \(\omega_{1}\) \(-\omega_{1}\) | \(\omega_{1}\) \(-\omega_{1}\) | \(\omega_{1}\) \(-\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(3\omega_{1}\) \(\omega_{1}\) \(-\omega_{1}\) \(-3\omega_{1}\) | \(3\omega_{1}\) \(\omega_{1}\) \(-\omega_{1}\) \(-3\omega_{1}\) | \(3\omega_{1}\) \(\omega_{1}\) \(-\omega_{1}\) \(-3\omega_{1}\) | \(3\omega_{1}\) \(\omega_{1}\) \(-\omega_{1}\) \(-3\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(-2\psi_{1}-4\psi_{2}\) | \(0\) | \(2\psi_{1}+4\psi_{2}\) | \(\omega_{1}-6\psi_{1}-6\psi_{2}\) \(-\omega_{1}-6\psi_{1}-6\psi_{2}\) | \(\omega_{1}-6\psi_{2}\) \(-\omega_{1}-6\psi_{2}\) | \(\omega_{1}-4\psi_{1}-2\psi_{2}\) \(-\omega_{1}-4\psi_{1}-2\psi_{2}\) | \(\omega_{1}+2\psi_{1}-2\psi_{2}\) \(-\omega_{1}+2\psi_{1}-2\psi_{2}\) | \(\omega_{1}-2\psi_{1}+2\psi_{2}\) \(-\omega_{1}-2\psi_{1}+2\psi_{2}\) | \(\omega_{1}+4\psi_{1}+2\psi_{2}\) \(-\omega_{1}+4\psi_{1}+2\psi_{2}\) | \(\omega_{1}+6\psi_{2}\) \(-\omega_{1}+6\psi_{2}\) | \(\omega_{1}+6\psi_{1}+6\psi_{2}\) \(-\omega_{1}+6\psi_{1}+6\psi_{2}\) | \(2\omega_{1}-4\psi_{1}-8\psi_{2}\) \(-4\psi_{1}-8\psi_{2}\) \(-2\omega_{1}-4\psi_{1}-8\psi_{2}\) | \(2\omega_{1}-2\psi_{1}-4\psi_{2}\) \(-2\psi_{1}-4\psi_{2}\) \(-2\omega_{1}-2\psi_{1}-4\psi_{2}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}+2\psi_{1}+4\psi_{2}\) \(2\psi_{1}+4\psi_{2}\) \(-2\omega_{1}+2\psi_{1}+4\psi_{2}\) | \(2\omega_{1}+4\psi_{1}+8\psi_{2}\) \(4\psi_{1}+8\psi_{2}\) \(-2\omega_{1}+4\psi_{1}+8\psi_{2}\) | \(3\omega_{1}-4\psi_{1}-2\psi_{2}\) \(\omega_{1}-4\psi_{1}-2\psi_{2}\) \(-\omega_{1}-4\psi_{1}-2\psi_{2}\) \(-3\omega_{1}-4\psi_{1}-2\psi_{2}\) | \(3\omega_{1}+2\psi_{1}-2\psi_{2}\) \(\omega_{1}+2\psi_{1}-2\psi_{2}\) \(-\omega_{1}+2\psi_{1}-2\psi_{2}\) \(-3\omega_{1}+2\psi_{1}-2\psi_{2}\) | \(3\omega_{1}-2\psi_{1}+2\psi_{2}\) \(\omega_{1}-2\psi_{1}+2\psi_{2}\) \(-\omega_{1}-2\psi_{1}+2\psi_{2}\) \(-3\omega_{1}-2\psi_{1}+2\psi_{2}\) | \(3\omega_{1}+4\psi_{1}+2\psi_{2}\) \(\omega_{1}+4\psi_{1}+2\psi_{2}\) \(-\omega_{1}+4\psi_{1}+2\psi_{2}\) \(-3\omega_{1}+4\psi_{1}+2\psi_{2}\) | \(4\omega_{1}-2\psi_{1}-4\psi_{2}\) \(2\omega_{1}-2\psi_{1}-4\psi_{2}\) \(-2\psi_{1}-4\psi_{2}\) \(-2\omega_{1}-2\psi_{1}-4\psi_{2}\) \(-4\omega_{1}-2\psi_{1}-4\psi_{2}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}+2\psi_{1}+4\psi_{2}\) \(2\omega_{1}+2\psi_{1}+4\psi_{2}\) \(2\psi_{1}+4\psi_{2}\) \(-2\omega_{1}+2\psi_{1}+4\psi_{2}\) \(-4\omega_{1}+2\psi_{1}+4\psi_{2}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{-2\psi_{1}-4\psi_{2}}\) | \(\displaystyle M_{0}\) | \(\displaystyle M_{2\psi_{1}+4\psi_{2}}\) | \(\displaystyle M_{\omega_{1}-6\psi_{1}-6\psi_{2}}\oplus M_{-\omega_{1}-6\psi_{1}-6\psi_{2}}\) | \(\displaystyle M_{\omega_{1}-6\psi_{2}}\oplus M_{-\omega_{1}-6\psi_{2}}\) | \(\displaystyle M_{\omega_{1}-4\psi_{1}-2\psi_{2}}\oplus M_{-\omega_{1}-4\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{\omega_{1}+2\psi_{1}-2\psi_{2}}\oplus M_{-\omega_{1}+2\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{\omega_{1}-2\psi_{1}+2\psi_{2}}\oplus M_{-\omega_{1}-2\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{\omega_{1}+4\psi_{1}+2\psi_{2}}\oplus M_{-\omega_{1}+4\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{\omega_{1}+6\psi_{2}}\oplus M_{-\omega_{1}+6\psi_{2}}\) | \(\displaystyle M_{\omega_{1}+6\psi_{1}+6\psi_{2}}\oplus M_{-\omega_{1}+6\psi_{1}+6\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}-4\psi_{1}-8\psi_{2}}\oplus M_{-4\psi_{1}-8\psi_{2}}\oplus M_{-2\omega_{1}-4\psi_{1}-8\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}-2\psi_{1}-4\psi_{2}}\oplus M_{-2\psi_{1}-4\psi_{2}}\oplus M_{-2\omega_{1}-2\psi_{1}-4\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}+2\psi_{1}+4\psi_{2}}\oplus M_{2\psi_{1}+4\psi_{2}}\oplus M_{-2\omega_{1}+2\psi_{1}+4\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}+4\psi_{1}+8\psi_{2}}\oplus M_{4\psi_{1}+8\psi_{2}}\oplus M_{-2\omega_{1}+4\psi_{1}+8\psi_{2}}\) | \(\displaystyle M_{3\omega_{1}-4\psi_{1}-2\psi_{2}}\oplus M_{\omega_{1}-4\psi_{1}-2\psi_{2}}\oplus M_{-\omega_{1}-4\psi_{1}-2\psi_{2}} \oplus M_{-3\omega_{1}-4\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{3\omega_{1}+2\psi_{1}-2\psi_{2}}\oplus M_{\omega_{1}+2\psi_{1}-2\psi_{2}}\oplus M_{-\omega_{1}+2\psi_{1}-2\psi_{2}} \oplus M_{-3\omega_{1}+2\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{3\omega_{1}-2\psi_{1}+2\psi_{2}}\oplus M_{\omega_{1}-2\psi_{1}+2\psi_{2}}\oplus M_{-\omega_{1}-2\psi_{1}+2\psi_{2}} \oplus M_{-3\omega_{1}-2\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{3\omega_{1}+4\psi_{1}+2\psi_{2}}\oplus M_{\omega_{1}+4\psi_{1}+2\psi_{2}}\oplus M_{-\omega_{1}+4\psi_{1}+2\psi_{2}} \oplus M_{-3\omega_{1}+4\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}-2\psi_{1}-4\psi_{2}}\oplus M_{2\omega_{1}-2\psi_{1}-4\psi_{2}}\oplus M_{-2\psi_{1}-4\psi_{2}}\oplus M_{-2\omega_{1}-2\psi_{1}-4\psi_{2}} \oplus M_{-4\omega_{1}-2\psi_{1}-4\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) | \(\displaystyle M_{4\omega_{1}+2\psi_{1}+4\psi_{2}}\oplus M_{2\omega_{1}+2\psi_{1}+4\psi_{2}}\oplus M_{2\psi_{1}+4\psi_{2}}\oplus M_{-2\omega_{1}+2\psi_{1}+4\psi_{2}} \oplus M_{-4\omega_{1}+2\psi_{1}+4\psi_{2}}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{-2\psi_{1}-4\psi_{2}}\) | \(\displaystyle 2M_{0}\) | \(\displaystyle M_{2\psi_{1}+4\psi_{2}}\) | \(\displaystyle M_{\omega_{1}-6\psi_{1}-6\psi_{2}}\oplus M_{-\omega_{1}-6\psi_{1}-6\psi_{2}}\) | \(\displaystyle M_{\omega_{1}-6\psi_{2}}\oplus M_{-\omega_{1}-6\psi_{2}}\) | \(\displaystyle M_{\omega_{1}-4\psi_{1}-2\psi_{2}}\oplus M_{-\omega_{1}-4\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{\omega_{1}+2\psi_{1}-2\psi_{2}}\oplus M_{-\omega_{1}+2\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{\omega_{1}-2\psi_{1}+2\psi_{2}}\oplus M_{-\omega_{1}-2\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{\omega_{1}+4\psi_{1}+2\psi_{2}}\oplus M_{-\omega_{1}+4\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{\omega_{1}+6\psi_{2}}\oplus M_{-\omega_{1}+6\psi_{2}}\) | \(\displaystyle M_{\omega_{1}+6\psi_{1}+6\psi_{2}}\oplus M_{-\omega_{1}+6\psi_{1}+6\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}-4\psi_{1}-8\psi_{2}}\oplus M_{-4\psi_{1}-8\psi_{2}}\oplus M_{-2\omega_{1}-4\psi_{1}-8\psi_{2}}\) | \(\displaystyle 2M_{2\omega_{1}-2\psi_{1}-4\psi_{2}}\oplus 2M_{-2\psi_{1}-4\psi_{2}}\oplus 2M_{-2\omega_{1}-2\psi_{1}-4\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle 2M_{2\omega_{1}}\oplus 2M_{0}\oplus 2M_{-2\omega_{1}}\) | \(\displaystyle 2M_{2\omega_{1}+2\psi_{1}+4\psi_{2}}\oplus 2M_{2\psi_{1}+4\psi_{2}}\oplus 2M_{-2\omega_{1}+2\psi_{1}+4\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}+4\psi_{1}+8\psi_{2}}\oplus M_{4\psi_{1}+8\psi_{2}}\oplus M_{-2\omega_{1}+4\psi_{1}+8\psi_{2}}\) | \(\displaystyle M_{3\omega_{1}-4\psi_{1}-2\psi_{2}}\oplus M_{\omega_{1}-4\psi_{1}-2\psi_{2}}\oplus M_{-\omega_{1}-4\psi_{1}-2\psi_{2}} \oplus M_{-3\omega_{1}-4\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{3\omega_{1}+2\psi_{1}-2\psi_{2}}\oplus M_{\omega_{1}+2\psi_{1}-2\psi_{2}}\oplus M_{-\omega_{1}+2\psi_{1}-2\psi_{2}} \oplus M_{-3\omega_{1}+2\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{3\omega_{1}-2\psi_{1}+2\psi_{2}}\oplus M_{\omega_{1}-2\psi_{1}+2\psi_{2}}\oplus M_{-\omega_{1}-2\psi_{1}+2\psi_{2}} \oplus M_{-3\omega_{1}-2\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{3\omega_{1}+4\psi_{1}+2\psi_{2}}\oplus M_{\omega_{1}+4\psi_{1}+2\psi_{2}}\oplus M_{-\omega_{1}+4\psi_{1}+2\psi_{2}} \oplus M_{-3\omega_{1}+4\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}-2\psi_{1}-4\psi_{2}}\oplus M_{2\omega_{1}-2\psi_{1}-4\psi_{2}}\oplus M_{-2\psi_{1}-4\psi_{2}}\oplus M_{-2\omega_{1}-2\psi_{1}-4\psi_{2}} \oplus M_{-4\omega_{1}-2\psi_{1}-4\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) | \(\displaystyle M_{4\omega_{1}+2\psi_{1}+4\psi_{2}}\oplus M_{2\omega_{1}+2\psi_{1}+4\psi_{2}}\oplus M_{2\psi_{1}+4\psi_{2}}\oplus M_{-2\omega_{1}+2\psi_{1}+4\psi_{2}} \oplus M_{-4\omega_{1}+2\psi_{1}+4\psi_{2}}\) |
2\\ |